The Chemical Reactivity of Tris-(triphenylphosphine)chloroplatinum(II) Undecachlorotrititanate, $[(C_6H_5)_3P]_3P$ tCl^TTi₃Cl₁₁

S. WONGNAWA [l] and E. P. SCHRAM*

Evans Chemical Laboratory, 88 West 18th Avenue, The Ohio State University, Columbus, Ohio 43210, U.S.A. Received November 14,1978

Treatment of $[(C_6H_5)_3P]_3PtC^{\dagger}Ti_3Cl_1$, (I), with *CH&' and pyridine, py, affords near quantitative yields of TiCl*₃ $(CH_3CN)_3$ and TiCl₃ $(py)_3$ based on the presence of 2TiCl₃ per Ti₃Cl₁₁. Oxidative hydrolysis *of (I), (Ti(III)* \rightarrow *Ti(IV) + 0.5H₂) affords a maximum HZ yield of 82% of that expected, similar to that* described for the oxidative hydrolysis of α -TiCl₃ *in the presence of cis-* $[(C₆H₅)₃P]₂PtCl₂$. Hydrogen *chloride reacts with (I) to afford* $\left\{ \left[\frac{\ell_6 H_5}{3} P t C l \right]^+ \right\}$ $[T_i₃Cl_{11} \cdot HCl]^-$ while CO affords $[(C_6H_5)_3P]_2$ -*PtCOCI*^{\bullet}. Both BF₃ and BCI₃ complex with (I) with *the latter displacing the former. Ion exchange reactions between (I) and* $(C_2H_5)_4NCl$ *and* $[(CH_3)_2$ *-CHCHZCH2]&I afford, as the only characterizable products,* cis- $[(C_6H_5)_3P]_2PtCl_2$ *and* trans- $[(C_6H_5)_3-$ *P]2PtIZ respectively. Reactions between (I) and (CZHs)flPF6 yielded no identifiable exchange products.*

Introduction

-

Treatment of tris-(triphenylphosphine)platinum- (0), $[(C_6H_5)_3P]_3Pt$, with excess titanium tetrachloride, TiCl₄, affords the emerald green salt, $[(C_6 H_5$)₃P]₃PtCl⁺ Ti₅Cl₁₉, which, on thermolysis, yields the brown salt, $[(C_6H_5)_3P]_3P1C1'Ti_3Cl_{11}^-, (I)$, and two equivalents of $TiCl₄ [2]$. Furthermore, the stoichiometry of the redox reaction affording these platinum complexes requires the anions contain two equivalents of Ti(II1). The reactions of (I) herein reported were carried out to obtain additional information regarding the chemical nature of (I).

Results and Discussion

Reactions of $[(C_6H_5)_3P]_3PtCTTi_3CI_{11}$ with Lewis *Bases*

Acetonitrile

Treatment of (I) with $CH₃CN$ effects decomposition of both the cation and anion and results in the formation of two equivalents of Ti(II1) per (I), *i.e.,* $TiCl₃(CH₃CN)₃$. Furthermore, one equivalent of $(C_6H_5)_3P$ is replaced by Cl⁻ as determined by the isolation of cis - $[(C_6H_5)_3P]_2PtCl_2$. The displaced $(C_6H_5)_3P$ is believed to be associated with Ti in the complex, $TiCl_4 \cdot CH_3CN \cdot P(C_6H_5)_3$. This chemical transformation is summarized by eqn. 1, while the associated data are contained in Table I.

$$
[(C_6H_5)_3P]_3PtCl^{\dagger}Ti_3Cl_{11}^- + 7CH_3CN \rightarrow
$$

$$
cis\cdot [(C_6H_5)_3P]_2PtCl_2 + 2TiCl_3(CH_3CN)_3 +
$$

$$
TiCl_4 \cdot CH_3CN \cdot P(C_6H_5)_3
$$
 (1)

^{*}Author to whom correspondence should be addressed.

Reaction	System	Mol Ratio of each Component Used	% Yield of H_2	
1	(I)		82 ^a	
$\overline{2}$	α -TiCl ₃		96	
3	α -TiCl ₃ + PPh ₃	1:1	96	
4	α -TiCl ₃ + PPh ₃ + cis-PtCl ₂ (PPh ₃) ₂	3:1:1	86	
5	same as 4	3:1:1	84	

TABLE II. Hydrogen Yields Associated with the Oxidative Hydrolyses of (I) and Other Ti(III)Containing Derivatives.

^aCalculated based on the presence of two equiv. of Ti(III) per equiv. of (I).

Both cis- $[(C_6H_5)_3P]_2PtCl_2$ and $TiCl_3(CH_3CN)_3$ were characterized by comparison of their physical properties and infrared spectra with authentic samples. The characterization of TiCl₄ \cdot CH₃CN \cdot P(C₆H₅)₃ is tentative; however, the identical species results from treatment of $TiCl_4 \cdot P(C_6H_5)$ ₃ with CH_3CN and contains Ti(IV), as opposed to Ti(III), based on its chemical and magnetic properties. Furthermore, the infrared spectrum of this species contains a strong infrared absorption at 2425 cm^{-1} indicative of coordinated $CH₃CN$, while the presence of coordinated $P(C₆H₅)₃$ is confirmed by the characteristic weak bands at 1587 and 1573 cm^{-1} , the very strong absorptions in the region $750-690$ cm^{-1} , and the very strong absorption at 500 cm⁻¹ found in both $TiCl₄ \cdot P(C₆H₅)₃$ and $TiCl_4[P(C_6H_5)_3]_2$ [3]. Finally, $TiCl_4 \cdot P(C_6H_5)_3 \cdot$ $CH₃CN$ is easily distinguished from TiCl₄(CH₃CN)₂ in that the latter contains a strong absorption at 398 cm^{-1} which is absent in the former [4]. Acetonitrile has been reported to reduce metal chlorides, e.g., $VC1₃$, $CoCl₃$, $MoCl₅$ and $WC1₆$, however, we have demonstrated that $TiCl₄$ is not reduced by $CH₃CN$ under the experimental conditions associated with the reaction described by eq. 1. Hence, the isolation of two equivalents of Ti(II1) per (I), eq. 1, is consistent with $Ti₃Cl₁₁[*]$ containing two equivalents of TiCl₃. In an analogous fashion, treatment of (I) with py was investigated.

Pyridine

Reaction of (I) with py at -78 °C, and subsequent warming of the reaction mixture at $0^{\circ}C$, results in the formation of a dark green solution and pale green precipitate. Filtration of this product mixture results in an 89% yield of $TiCl₃(py)₃$ which is soluble in $CH₃CN$. Subsequent washing of the pale green precipitate with benzene results in the isolation of cis - $[(C_6H_5)_3P]_2PtCl_2$. Both of these species were characterized by comparison of their respective infrared spectra with those of authentic samples. Titanium tetrachloride has been reported to afford $TiCl₃(py)₃$, when treated with py [5]. However we have observed no reduction at 0° C during a 10 hr reaction period although we have noted reduction within 30 min at 25 °C. The immediate appearance of green $TiCl₃(py)₃$, on treating (I) with py, further confirms the presence of Ti(III) in the anion, $Ti₃$ - Cl_{11} .

Oxidative Hydrolysis of (I)

Usually one may determine the amount of Ti(II1) present in a sample by the base catalyzed oxidation of Ti(II1) to Ti(IV) with accompanying reduction of $H₂O$ to afford $\frac{1}{2}$ mol $H₂$ per equivalent of Ti(III) [6]. We have found that when one carried out the base catalyzed oxidation of (I) and $[(C_6H_5)_3P]_3$ PtCl⁺Ti_sCl₁₉ (II), the H₂ yields are dependent on the size of the sample hydrolyzed. For example, when one treats 0.07 mmol of (II) with aqueous base, a 11% yield of $H₂$ results, based on two equivalents of Ti(III) per mol (II). By increasing the sample size to 0.8 mmol (II), a 69% yield of $H₂$ was obtained. In a similar manner we have found the $H₂$ yield associated with the oxidative hydrolysis of (I) to vary with sample size. Table II summarizes $H₂$ yield data, associated with (I) as well as the affect of $(C_6H_5)_3P$ and a Pt(II) complex on the $H₂$ yield associated with the oxidative hydrolysis of α -TiCl₃. In all cases, Table II, samples contained ca. 1.5 meg of Ti(II1). The H_2 yield for α -TiCl₃, in the presence or absence of $(C_6H_5)_3P$ is essentially quantitative, reactions 2 and 3, Table II, whereas the addition of *cis*- $(C_6H_5)_{3}$ - $P|_2$ PtCl₂ results in a decreased H₂ yield, reactions 4 and 5. A Pt(II) complex was added to α -TiCl₃ because (I) has been established to contain Pt(I1) [2]. Apparently base catalyzed oxidation of Ti(II1) is accomplished by reduction of Pt(I1) in addition to reduction of $H₂O$. The infrared spectra of the control hydrolysis residue and that of (I), reactions 4 and 1 respectively, Table I, are identical and contain absorptions characteristic of $OP(C_6H_5)$ at 1182, 1155, 1120, 1070, 999, 748, 729, 695 and 540 cm⁻¹ [7]. No platinum phosphine complexes survive the hydrolyses based on the fact that the ³¹P NMR spectrum of both hydrolysis residues exhibit no ¹⁹⁵Pt⁻³¹P coupling - a single absorption is found in both systems at -24.06 ppm (relation to 85% H₃PO₄) and is assigned to $OP(C_6H_5)_3$.

Reaction				Reaction Temp.	Reaction Time	Boron Trihalide	mmol of Boron Trihalide
		g	mmol	(°C)	(hr)	Absorbed (mmol)	per mmol of (I)
BF ₃	$1^{\mathbf{a}}$	0.255	0.165	0	24	0.051	0.31
	$\frac{1}{3}$ _b	0.495	0.320	25	29	0.120	0.38
		0.273	0.176	25	20	0.066	0.38
BCI ₃	4 ^a	0.339	0.218	0	15	$\overline{}$	$\overline{}$
	5°	0.371	0.240	0	20	0.166	0.69
	6 ^b	0.443	0.286	0	37	0.261	0.91

TABLE III. Data on the Reaction of (I) with Boron Trihalides.

^aReaction carried out in dichloromethane. ^bSolid state reaction.

Ion *Exchange Reaction with (I), Attempted Isolation of New Salts of Ti₃* CI_{11}^-

In an effort to isolate salts of $Ti_3CI_{11}^-$, free of complexed platinum, solutions of (I) were treated separately with $(C_2H_5)_4NCl$, $[(CH_3)_2CHCH_2CH_2]_4$ -NI, and $(C_2H_4)_4$ NPF₆. In no case could new derivatives of Ti₃Cl₁₁ be isolated but rather halogen-P(C₆- $H₅$)₃ exchange took place. Tetraethylammonium chloride afforded cis- $[(C_6H_5)_3P]_2PtCl_2$ while $[(CH₃)₂CHCH₂CH₂]₄NI resulted in the formation of$ $trans \left[(C_6H_5)_3P \right]_2PtI_2$. Characterization of the former was based on the comparison of its infrared spectrum with that of an authentic sample while the latter was identified by its m.p. [8] and the fact that its infrared spectrum was identical to that of *trans-* $[(C_6H_5)_3P]_2PtCl_2$ except for the frequencies of the ν PtX₂ absorptions [8]. The ease of obtaining *trans*- $[(C_6H_5)_3P]_2PtI_2$, by treatment of (I) with $[(CH_3)_2$ - $CHCH₂CH₂$]₄NI, is in contrast to the thermal rearrangement of cis- $[(C_6H_5)_3P]_2PtI_2$ [8].

Formation of trans- $[(C_6H_5)_3P]_2Pt1_2$ from $[(C_6-F_6)$. H_5)₃P]₄Pt and I₂ has also been reported to take place under reaction conditions which prevent formation of $(C_6H_5)_3P$ as the latter has been shown to catalyse *trans-cis* isomerizations of $[(C_6H_5)_3P]_2PtI_2$ [9]. In a similar fashion, in the reaction system $[(C_6 H_5$)₃P]₃PtCl⁺ and I⁻, the Lewis acid Ti₃Cl₁₁ in present, $(2TiCl₃ + TiCl₄)$, hence displaced $P(C₆H₅)₃$ would be expected to be removed thereby eliminating *trans-cis* isomerization of $[(C_6H_5)_3P]_2PtI_2$.

In an effort to eliminate halide attack on $[(C_6 H_5$ ₃ P_3P_4C1 , (I) was treated with $(C_2H_5)_4NPF_6$ $[12-14]$. Unfortunately, no new crystallizable materials could be isolated from the resulting reaction mixture. In an attempt to abstract Cl^- from $Ti_3Cl_{11}^-, (I)$ was treated with both BF_3 and BCI_3 .

Reactions of (I) with Lewis Acids

Data associated with treatment of (I) with BF, and $BCI₃$, in solution and in the solid state, are summarized in Table III. The reaction ratios reported for BF₃, reactions 1, 2, and 3 *(ca.* (I): 0.4BF₃), are based on initial uptake of BF_3 . With respect to subsequent displacement of BF_3 by BCl_3 , the combined reaction products, reactions 2 and 3, Table III (0.186 mmol $BF₃$) afforded 0.123 mmol $BF₃$ when treated with excess $BCI₃$. The non-stoichiometric nature of the reaction between (I) and BF_3 does not appear to be a consequence of the heterogeneous nature of the reaction, reaction 1, Table III, because only a slight increase of $BF₃$ uptake was observed during solution reactions, reactions 2 and 3, Table III. Furthermore, the observed stoichiometry is not due to an equilibrium concentration of BF_3 because (I) \cdot 0.4 BF_3 is stable *in vacua* at 25 "C.

Reaction of (I) with $BCl₃$ takes place to a greater extent than with BF_3 with a near 1:1 stoichiometry achieved under homogeneous reaction conditions, reaction 6, Table III. The ³¹P NMR spectrum of this product, as well as the BF_3 reaction product, is that of $[(C_6H_5)_3P]_3P_1CI^*$ and hence consistent with complex formation, *i.e.*, reaction between $Ti₃Cl₁₁$ and $BCI₃$ or $BF₃$. The infrared spectrum of the $BCI₃$ reaction product, reaction 6, Table III, is identical to that of (I). The presence of coordinated $BCl₃$ can often be detected by $v_{\text{as}} BCl_2$ in the range 1000–800 m^{-1} and 800-650 cm⁻¹ for three and four coordinated BCL, respectively [10, 11] Unfortunately the absorptions of (I), 692vs, 705vs(sh), 743vs, and $845w$ cm⁻¹ mask the four coordinate regions of the infrared spectrum of (I) BCl₃. In a similar fashion, $v_{\rm as}$ BF₂ absorptions are masked in the four coordinate regions of BF_3 complexes, 1150-1000 cm⁻¹ [12-14], by absorption at 999ms, 1022m, 1050m, 1092s, 1111m, and 1159 w cm⁻¹ in (I).

We have previously demonstrated that treatment of $[(C_6H_5)_3P]$, $PtCl^+Ti_3Cl_{11}$, (I), with the Lewis acid, TiCl₄, affords $[(C_6H_5)_3P]_3P1C1'T1_5Cl_{19}$ and observed that the latter is green in color while the former is brown [2]. The reaction product of (I) with $BCI₃$ was noted to be green-brown in color and furthermore, as previously mentioned, the $31P$ NMR spectrum of (I) . BCl₃ is identical to $[(C_6H_5)_3P]_3$. PtCl⁺. On the basis of the cited data, (I) BCl₃ is

Reaction	Amount of (I)		Reaction Temp.	Reaction Time	Amount of HCl	Mol Ratio of
	g	mmol	(°C)	(hr)	reacted (mmol)	(I)/HCl
1ª	0.476	0.307		26	0.295	1:0.96
$\frac{1}{2}$ _b	0.662	0.427	25	14	0.471	1:1.10

TABLE IV. Reaction of (I) with Hydrogen Chloride.

^aReactions carried out in dichloromethane. ^bSolid state reaction.

formulated as $[(C_6H_5)_3P]_3PtCl^+Ti_3Cl_{11} \cdot BCl_3^-$ while the nature of the reaction product between (I) and BF₃ remains unknown.

Reactions of (I) with HCl

Treatment of (I) with HCl was carried out in an effort to prepare $Ti₃Cl₁₁H$ with possible by-products including cis- $[(C_6H_5)_3P]_2PtCl_2$ and $P(C_6H_5)_3$. The data associated with this reaction are contained in Table IV and are interpreted to indicate formation of a complex with the stoichiometry, (I) HCl. The ³¹P NMR spectrum of I HCl is identical to that of (I) consistent with reactions of HCl with $Ti_3Cl_{11}^-$ rather than $[(C_6H_5)_3P]_3PtCl^+$. This lack of reactivity between the cation and HCl is in contrast to reactions between $\left[\left(C_6H_5\right)_3P\right]_3RhCl$ or $\left[\left(C_6H_5\right)_3P\right]_3IrCl$ with HCl to afford $[(C_6H_5)_3P]_3RhHCl_2$ and $[(C_6H_5)_3P]_3$. IrHCl₂, respectively $[15, 16]$. Hydrogen chloride has been reported to reversibly react with *trans*- $[(C_2 - C_1)]$ H_5)₃P]₂PtHCl to afford $[(C_2H_5)_3P]_2PH_2Cl_2$ but the latter is only stable in the presence of excess HCl.

The infrared spectrum of $I⁺HCl$ is identical to that of (I) and chloride ion has not been abstracted from (I) to afford ClHCl-, based on the absence of strong antisymmetric and bending infrared absorptions in the reaction product, which have been attributed to ClHCl⁻ (1565 and 1180 cm⁻¹) [17, 18]. Most likely, I*HCl contains the new anion, $Ti_3Cl_{12}H$ with ν H-Cl masked by the infrared absorptions of (I).

Reactions of (I) with Unsaturated Ligands

Treatment of (I) in solution, -78° to 25 °C, with ethylene at 800 torr for 22 hr resulted in no uptake of ethylene. Both reactants were quantitatively recovered. This lack of reactivity of (I) with C_2H_4 is in contrast to that with CO; data associated with the latter are summarized in Table V. In no case was a 1:l stoichiometry achieved with CO; however, a reproducible ratio of 2(I):l(CO) was obtained at 1 atm CO pressure, reactions $1-3$ as compared to reactions 4-6, Table V. The infrared spectrum of the product in all cases contain a strong absorption in the carbonyl region at 2108 cm^{-1} . Subsequent pyrolysis of the reaction product at 160° C results in

TABLE V. Stoichiometry for the Reaction of (1) with CO.

Reaction ^a	(I)		CO Complexed ^b	Mol Ratio of $(I)/CO$	
	g	mmol	mmol		
	0.190	0.123	0.03	4:1	
$\mathbf{2}$	0.472	0.304	0.09	3.5:1	
3	1.860	1.199	0.31	4:1	
4	1.098	0.708	0.34	2:1	
5	0.715	0.461	0.23	2:1	
6	0.472	0.304	0.14	2:1	

^aThe first three reactions were carried out under *ca*. 100 torr of CO pressure while the last three reactions were under 1 atm CO. bDetermined as CO recovered during thermolysis.

Fig. 1. FT 31 P NMR spectrum of the reaction mixture resulting from treatment of (I) with CO. A) Due to trans- $[(C_6 - C_6)]$ H_5)₃P]₂Pt(CO)Cl⁺, B) Due to $[(C_6H_5)_3P]_3P1C1^*$.

complete removal of CO as evidenced by loss of the 2108 cm⁻¹ absorption.

The ^{31}P NMR spectrum, obtained in CH₂Cl₂, for the reaction product produced under the reaction conditions identical to reaction 6, Table V, is reproduced in Fig. 1 and the data summarized in Table VI. Although several unidentified phosphorus containing species are present, *i.e.,* associated with the absorptions at -13.68 , -20.99 and -23.98 ppm, only two Pt-P complexes are present. Unreacted $[(C_6H_5)_3$ -

Species	Chem. Shift ^a (ppm)	$\mathbf{F}_{\text{Pt-P}}$ (Hz)	${}^{2}J_{P_{A}-P_{B}}$ (Hz)	Relative Intensity ^c
$trans-Pt(PPh3)2(CO)Cl+$	-19.6	1975	$\overline{}$	2.04
trans- $Pt(PPh3)3Cl+$	$-12.2(P_B)^b$	$3642(P_R)$	18	$1.00(P_B)^c$
	$-22.9(P_A)$	$2481(P_A)$	18	$1.61(P_A)^c$

TABLE VI. ³¹P NMR Data on the Reaction Mixture Resulting from Treatment of (I) with CO.

^aNegative sign indicates downfield shift relative to 85% H₃PO₄. phorus atoms in the geometry. (A) PPh₃

$$
\begin{array}{c}\n\textbf{(B) Ph}_3\textbf{P}\longrightarrow\textbf{Pt}\longrightarrow\textbf{Cl} \\
\mid \\
\textbf{(A) PPh}_3\n\end{array}
$$

^cRelative to that of P_B in Pt(PPh₃)₃Cl⁺.

 $P_{13}P_{1}Cl^{\dagger}$ is positively identified by the absorptions at -12.2 ppm and 22.9 with $1_{\text{Pt-P}}$ coupling consants, 3642 Hz and 2481 Hz, respectively $[2]$. The new PtP complex exhibits a ³¹P chemical shift at -19.6 ppm, and $^{1}J_{P_{1}-P}$ 1975 Hz. Trans-Cl(CO)Pt- $PC1₃$)₂ BF₄ has been reported to exhibit ν CO at 2120 cm^{-1} (in solution) [19] as compared to 2108 cm^{-1} (solid state) observed for the reaction product of (I) and CO. Based on the combined ³¹P NMR and infrared data, the platinum-phosphine-carbonyl complex present in solution is tentatively characterized as *trans-*ClCOPt(PCl₃)^{$\frac{1}{2}$. With regard to P(C₆H₅)₃} displaced from Pt, we have observed $TiCl_4 \cdot P(C_6H_5)_3$ to exhibit a $31P$ NMR absorption at -18 ppm. The singlet observed at -20.99 is most likely associated with $P(C_6H_5)_3$ complexed to $Ti_3Cl_1^{1-}$ or its components.

Experimental

The high vacuum equipment and techniques employed during syntheses and investigation of chemical species have been previously described [3]. Reactions were carried out either in a 10 or 50 ml bulb containing a teflon coated spin bar and the bulb attached via O-ring joints and a teflon stopcock to the manifold of the vacuum line. Air and moisture sensitive materials, soluble vs. insoluble in a particular solvent, were separated by filtration *in vacua* employing a medium porosity glass frit.

Qualitative Test for Ti(III). Ammonia

The determination of the presence of Ti(III) in a sample was carried out after treatment with $3M H_2$ -SO4 and removing any residue by filtration. The presence of Ti(II1) was indicated by the violet color of the resulting solution and subsequent addition of ammonia to the solution resulted in precipitation of

black Ti₂O₃. This precipitate affords white TiO₂ after heating to 100 \degree for 30 min. The presence of Ti(IV) is indicated by the immediate formation of $TiO₂$ with addition of NH₃. Titanium(IV) can be qualitatively detected at a low limit of ca. 5 \times 10⁻³ \overline{M} Ti. For Ti(III) the limit was not determined, however it is less than 5×10^{-3} M due to the obvious formation of black $Ti₂O₃$. When a sample contained both Ti(III) and Ti(IV) in comparable amounts, it was not possible to detect Ti(IV) because the black precipitate of $Ti₂O₃$ completely masks the white precipitate of $TiO₂$.

^bSubscript A and B refer to the designated position of phos-

Peroxide Test

After sample treatment with $3M$ H₂SO₄, 30% hydrogen peroxide was added to the filtrate. The initial presence of Ti(II1) or (IV) results in the formation of a clear yellow solution. This test easily detects Ti(III) or (V) at 3×10^{-4} M Ti; however, it does not distinguish between the two oxidation states.

Reagents

Acetonitrile, Fisher Scientific Co., was dried over calcium hydride and fractionated through a -35° trap into a -78° trap. The condensate in the -78° trap, acetonitrile, had a vapor pressure of 25.5 torr at 0' (lit. 25.0 torr [20]). *Ammonium hexafluorophosphate,* PCR, Inc., was used as received. *Benzene, Anal.* Reagent, J. T. Baker Co., was dried over lithium aluminum hydride. *Benzene-de, 99.5%,* ICN Corp., was used as received. *Boron trichloride,* Matheson Co., was purified through a -45° trap into a -126° trap. Boron trichloride, collected from the -126° trap, had a vapor pressure of 4.2 torr at -78° (lit. 3.9 torr [20]). *Boron trifluoride, The* Matheson CO., was purified through a -126' trap. *Carbon monoxide, The* Matheson Co., was purified by circulation through a -126" trap. *Cvclopentane,* 99%, Chemical Samples Co., was dried over lithium aluminum hydride and fractionated through a series f -46° , -78° , and -196° traps and collected from the -78" trap. *1,2-Dichlorobenzene,* Anal. Reagent, J. T. Raker Co., was dried over lithium aluminum hydride and purified further by distilling in a Nester Faust spinning band column at 59.5' under 10 torr of inert gas (lit. = 59.1', 10 torr [20]). *Dichloromethane, Anal.* Reagent, Mallinckrodt Chemical Works, was dried over lithium aluminum hydride and fractionated through a -22° trap into a -78° trap; the -78° trap fraction had a vapor pressure of 41.5 torr at -22' (lit. 40.0 torr [21]). *Dichloromethanedz, 99%,* Merck Co., Inc., was used as received. *Ethanol, 95%,* Commercial Solvents Corp., was used as received. *Ethylene, The* Matheson Co., was purified through a -78° trap into a -196° trap. *Hydrogen chloride, The* Matheson Co., was purified by functional condensation through a -126° trap, the -196' fraction was used. *Hydrogen peroxide, 30%,* Mallinckrodt Chemical Works, was used as received. *Pyridine,* py, Fisher Scientific Co., was dried by refluxing over calcium hydride for 24 hr and distilled *in uacuo.* Pyridine dried in this manner reacts with TiC14 to yield a red rather than a green solution. Pyridine was further dried by treatment with a small amount of TiCl₄, prior to distillation. Tetraethyl*ammonium chloride,* Eastman Organic Chemicals, was dried by heating to 95', *in vacua,* for *co.* 10 h. *Tetraethylammonium hexafluorophosphate,* was prepared by dissolving equimolar amounts of NH4- PF_6 and Net₄Cl in water. The resulting white solid was washed repeatedly with distilled water until the filtrate indicated the absence of Cl⁻ when treated with AgNO₃. After rinsing with EtOH it was dried, *in vacua,* at 25" for 24 h. *Tetraisopentylammonium iodide*, $(CH_3)_2$ CHCH₂CH₂)₄NI, Eastman Organic Chemicals, was dried by heating to 70", *in vacua,* for 6 h. *Titanium tetrachloride, 99.9%,* Alfa Products, was purified immediately before use by fractionating into a -15° trap while other more volatile components passed through this trap into a -196° trap. α -*Titanium trichloride, >98%,* Alfa Products, was heated at 200", *in vacua,* for *ca.* 2 h before use. Triphenylphosphine, Chemical Samples Co., was used as received. *Potassium hexachloroplatinate(IV)* was prepared as described in the lit. [22] . *Potassium tetra.* $chloroplatinate(II)$ was prepared from $K₂PLCl₆$, using hydrazine dihydrochloride, as described in the lit. [23] . *cis-Dichlorobis(triphenylphosphine)plati* $num(II)$ was prepared from K_2PtCl_4 by the method described in the lit. [24]. Ir data: 306Ow, 1585w, 157Ow, 148Os, 1432vs, 1312m, 1185w, 1165w, 1155w, 1105s, 1099s, 109Os, 1063w, 1029w, lOOOm, 758s, 747s, 718m, sh, 707s, 699vs, 69Os, sh, 62Ovw, 55Os, 529vs, 5 18s, 5OOs, 465w, 45Ovw, 44Ovw, 42Ow, 320ms, and 292ms, cm-'. *Tetrachlorobis(aceto* n itrile)titanium(IV), TiCl₄(CH₃CN)₂, was prepared by condensing excess acetonitrile onto 0.015 mol

(2.772 g) of titanium tetrachloride at -78° . After warming to 25° and removal of excess CH₃CN, the yellow solid was pumped to dryness and the weight increase was equivalent to 0.027 mol of $CH₃CN$ corresponding to $TiCl_4(CH_3CN)_{1,8}$. The ir spectrum of this compound was identical to that reported for $TiCl_4(CH_3CN)_2$ [4]. When $TiCl_4(CH_3CN)_2$ is allowed to contact liquid acetonitrile for 36 hr at 25° , no change takes place in the product. *Tetrachlorobis- (pyridine)titanium(IV)*, $TiCl₄(py)₂$, was prepared by condensing an excess pyridine, py, with $TiCl₄$ at -78° . The reaction flask was allowed to warm up to 0' and maintained at this temperature with stirring to avoid reduction to Ti(II1) by py [5]. This reaction was exothermic yielding a yellow solid. After 15 m at 0" the excess py was removed and the ir spectrum of the yellow product had absorptions at: 31OOvw, 1912w, 1662w, 1638w, 1612vs, 1572w, 1538m, 149Os, 145Ovs, 13lOm, 124Ow, 122Ovs, 1161w, 1132w, 109Ow, 1072vs, 105Os, 1024vs, 95Om, 69w, 763ys, 708m, 692ys, 650ys, 610w, 445ys, 378yys, and $292s$, cm^{-1} . When the reaction was carried out at 25° reduction of Ti(IV) to Ti(III) by pyridine occurred in 30 m as evidenced by the small amount of green color indicating the presence of $TiCl₃(py)₃$. At 0' this reduction was much slower: *ca. 10* h was required for the green color to be observed. *Trichlorotris(pyridine)titanium(III)*, $TiCl₃(py)₃$, was prepared by distilling pyridine into a flask containing α -TiCl₃ at -78° . During a subsequent warm-up period, the liquid turned to greenish brown, then clear green, with precipitation of microcrystalline green $TiCl₃(py)₃$. Ir data: 1600s, 1583m, 1570w, sh, 1484s, 1441vs, 1228m, 1211s, 1161w, 1152w, sh, 1149m, 1068s, 1042s, 1033w, lOlOs, 995m, 99Ovw, 779w, 764s, 743ms, 696vs, 635s, 628m, 605w, 43Os, ms, 400vs, 350s, 320s, and 280m, cm⁻¹. $\left[\frac{C_6H_5}{r^3}\right]$ $P]_2PtCl$ ⁺ Ti_5Cl ₁₉, (II), was prepared by the lit. method $[2,3]$.

Detection and Measurements of Ti(III) in (II)

Qualitative tests for the presence of Ti(II1) in (II) were positive using the ammonia test. The amount of Ti(II1) was measured indirectly by measuring the amount of H_2 produced when (II) was hydrolyzed in basic solution. 25 ml of 1 *M* KOH was added to a flask containing 1.601 g (0.813 mmol) of (II). Titanium trioxide formed under these conditions was oxidized further by water to afford H_2 and TiO₂. During the first 40 hr, this oxidation proceeded rather vigorously affording 0.463 mmol of $H₂$. After this period of time, oxidation of Ti(II1) was extremely slow; heating at 48° with stirring for 20 hr afforded 0.070 mmol H_2 . At this point the reaction residue was pale blue indicating only small amounts of $Ti₂O₃$. Another heating period at 60° for 60 hr yielded an additional 0.28 mmol of $H₂$. This second heating period changed the residue drastically to a

heterogeneous mixture of orange and white solids. No trace of bluish residue could be seen in the mixtury indicating that it was relatively free of $Ti₂O₃$. However, to assure completeness of the reaction it was heated at 70° for an additional 15 hr during which no additional H_2 formed. The total amount of $H₂$ collected was 0.561 mmol and it was characterized by oxidation to water with CuO at 300 °C. The residue, a mixture of orange and white solids, was filtered and dried. Ir data: 305Ow, 1677m, 1625w,sh, 1587w, 1565w, 1439vs, 131Ow, 12OOm,sh, 1182ms, 1155m,sh, 112Os, 1096ms, 107Ow, 1028w, 999w, 97Ovw, 925vw, 758m,sh, 748ms, 72Os, 695vs, 54Ovs, 528s,sh, 518s,sh, SOOms,sh, 46Om, and 29Ow, cm^{-1} .

Detection and Measurements of Ti(III) in (I)

The qualitative test for the presence of Ti(II1) in (I) was carried out by the method previously described and resulted in formation of black $Ti₂O₃$. Treatment of (I), 0.860 g (0.555 mmol), with 15 ml of $1 M$ KOH afforded 0.458 mmol of H_2 after heating at 60' for 20 hr. The residue obtained from this hydrolysis was identical in appearance and its ir spectrum was identical to that of hydrolyzed (II).

Reaction of (I): Acetonitrile

Excess CH₃CN was condensed onto 0.842 g (0.543) mmol) of (I) at -78° . The solution was allowed to warm slowly to 25° with stirring to afford a white precipitate and a clear blue solution. The white precipitate was separated by filtration and dried to afford 0.371 g of the cis- $[(C_6H_5)_3P]_2PtCl_2$ which was characterized by comparison of its ir spectrum with that of the authentic compound. An equivolume of cyclopentane was added to the clear blue filtrate affording a greenish-blue solution and a small amount of yellow precipitate, 0.071 g. This yellow material was diamagnetic (Faraday method) and contained Ti(IV), ammonia test, m.p. 201-203'. Ir data: 308Ow, 2425s, 191Ow, 1825w, 168Ow, 1587w, 1573w, 1485s, 1440vs, 1338w, 1320w, 1168s. 115Ow, 1113vs, 107Ow, 1028w, 995w, 869vs, 76Ovs, 722vs, 692vs, 540w, 500vs, 430m, and 318vs, cm^{-1} . The filtrate was reduced in volume and cyclopentane added to afford a blue precipitate and a slightly greenish-blue filtrate. This procedure was repeated to afford an additional small amount of blue precipitate and a blue filtrate. The total mass of blue solid was 0.265 g and identified by its ir spectrum as $TiCl₃$ $(CH_3CN)_3$.

Preparation of TiCl₄- $P(C_6H_5)_3$ ⁻CH₃CN

 $TiCl_4 \cdot P(C_6H_5)_3$, was refluxed in CH₃CN at 85° under dry nitrogen for 72 hr to afford a green solution. At 25° this reaction system consisted of a mixture of blue, red and grey solid material and a yellow solution. Filtration and solvent removed,

in vacua, affords a yellow crystalling solid identical in ir spectrum and m.p. to that produced by the reaction of (I) and CH₃CN, *i.e.*, $TiCl_4 \cdot P(C_6H_5)_3$. $CH₃CN.$

Reaction of (I) with Pyridine

An excess of py was condensed onto 0.40 g (0.26 mmol) of (I) at -78° and allowed to warm to and maintained at 0" for 1 hr. The green precipitate was dissolved in CHaCN and filtered to afford *ca. 0.3 g* of yellow-green solid after removal of CHaCN. This solid contained a trace amount of cis - (C_6H_5) ₃-P)₂PtCl₂ which was identified by its ir spectrum. The insoluble material was washed with $CH₃CN$ and benzene and identified as pure cis (C₆H_s)₃P)₂PtCl₂ by its ir spectrum. Redissolving of the yellow-green solid, in a minimum of $CH₃CN$, afforded a green solution which was separated from a white precipitate by filtration to afford *ca*. 0.18 g TiCl₃(py)₃. The white precipitate was washed with benzene and identified as cis -Cl₂Pt(P(C₆H₅)₃)₂ by its ir spectrum.

Reaction of (I) with (C,H,)&l

Dichloromethane was condensed onto a mixture of excess $(C_2H_5)_4NCl$ and (I), 0.3 g (0.2 mmol), at -78° and warmed to 25° with gentle stirring. An orange solid and a yellow solution resulted within one hr and were separated by filtration to afford an orange solid and a clear yellow solution. The orange solid was air sensitive turning yellow. It dissolved completely in $3M H_2SO_4$ to afford a violet solution which yielded $Ti₂O₃$ when treated with ammonia, an indication of Ti(II1). The orange solid has ir absorptions at: 1400ms, 1308m, 127Ow, 1184s, 1175m, sh, 112Ow, 108Ow, 1033s, 1009s, 969m, 895w, 792s, 742w, sh, 720m, and 322vs, cm^{-1} . After solvent removal, the light yellow precipitate was determined to be free from Ti by the peroxide test. Ir data for the yellow solid: 305Ow, 1585w, 157Ovw, 148Ovw, 1473vs, 1409w, 1312w, 1182ms, 1155m, 1119m, 1096s, 109Os, 1071w, sh, 1028m, lOOOm, 968w, 804m, 754s, 744vs, 72Os, sh, 693vs, 615vw, 548vs, 527vs, 514vs, 498s, 464w, 42Ow, 318 ms, and 292 m cm⁻¹.

When the reactants were used in equimolar amounts, a dark brown solid and a clear brown solution were obtained. The solid contained Ti(II1) as indicated by the ammonia test. Ir data: 1483vs, 144Ovs, 1392m, 1185w, sh, 1171m, 112Om, 109Ow, 106Ow, lOOOm, 783m, 745m, 72Om, 690m, 538m, 520m, 496w, 391vs, 37Ovs, 316w, 26Oms, sh, and $258s$, cm^{-1} . The filtrate, after solvent removal, yielded a light brown solid which gave negative ammonia and peroxide tests for Ti(II1) and Ti(IV), respectively. Ir data on the light brown solid: 305Ow, 1583w, 157Ow, 1477vs, 1433vs, 131Ow, 118Ow, 116Ow, 112Oms, 109Ovs, 1025m, lOOOms, 92Ovw, 845w, 78Ow, 743vs, 69Ovs, 615w, 545ms, 52Ovs,

495s, 46Ovs, 42Oms, 365ms, 345ms, 320ms, and $290w$, cm^{-1} .

Reaction of (I) with Tetraisopentylammonium Iodide, $[CH_3CH_2CH(CH_3)_2]$ ₄NI

Equal molar quantities of (I) , 0.3 g (0.2 mmol) , and the iodide salt were treated with several ml $CH₃Cl₂$ at -78° . A brown solution was immediately obtained and the reaction mixture warmed to 25' to afford a clear brown solution. Reduction of the solution volume resulted in precipitation of an orange, microcrystalline solid which was separated by filtration. This material was air stable, gave a negative peroxide test for Ti, and was identified as $trans(C_6H_5)_3P)_2PtI_2$ by its m.p. and ir spectrum. Ir data: 305Ow, 1582w, 157Ow, 147Ovs, 1432vs, 1309m, 1269m, 118Om, 1158m, 1098vs, 1092vs,sh, 1070m, 1028m, 999m, 97Ovs, 855vs, sh, 84Ow, 755s, 742s, 703s, 693vs, 617w, 523vs, 512vs, 499s, 461m, 430m, and $422m$, sh, cm⁻¹. The filtrate, after solvent removal, afforded a solid which appeared to be a mixture of brown and yellowish solids. The ammonia test indicated that this solid contained Ti(II1). Ir data: 305Ow, 1585w, 157Ovs, 137Ovs, 1350m, 1295w, 117Os, sh, 116Os, 1122m, 1096w, 109Ow, 107Ovs, 1045w, 1029w, 999w, 95Ow, 929m, 880m, 834w, 768m, 745m, 720m, 692s, 54Om, 520m, 5 lOm, 498m, 428w, 33Ovs, and 305vs, cm-'.

Reaction of (I) with $(C_2H_5)_4NPF_6$

(I), 0.5 g (0.3 mmol), was treated with excess $(C_2H_5)_4NPF_6$ and several ml of CH_2Cl_2 at -78° . The solution mixture was warmed and stirred for 1 hr at 25", yielding a light yellow solution and a dark colored residue. The unreacted $(C_2H_5)_4NPF_6$ was also observed as a colorless solid. The mixture was separated by filtration to afford a greyish black and white precipitate, and a clear yellow solution. The precipitate was repeatedly washed with the original solvent and unreacted NEt_4PF_6 successfully removed from the residue. The dark brown solid tested positive for Ti(II1) with ammonia, and contained ir absorptions at: 1485vs, 144Os, 1393s, 1186m, 1175s, 1098w, 106Ow, 103Ow, sh, lOOOm, 850ms, 84Os, 785ms, 745w, 725w, 693w, 56Om, 55Om, 53Ow, 518vw, 39Ovs, 37Ovs, 36Ovs, 315w, 285m, sh, 27Os, and 257 vs, cm^{-1} . The yellow filtrate, after solvent removal, yielded a pale yellow solid which seemed to be a heterogeneous mixture of yellow and white solids. The peroxide test indicated only traces of titanium. Ir data: 1588w, 1575w, 1482s, 1441s, 1410m, 1313m, 1189ms, 1095m, 108Om, 1032m, lOlOms, 880s,sh, 84Ov,vs, 798ms, sh, 790ms, 745m, 732w, sh, 705ms, sh, 695ms, 56Ovs, 525s, 518s, sh, and 498m, cm^{-1} .

Reaction of (I) with BF,

Boron trifluoride, 1.80 mmol, was condensed onto 0.255 g (0.165 mmol) (I) and CH_2Cl_2 at -196° , and

the reaction mixture warmed and maintained with tirring at 0° for 24 h, P_{BF} = 600 torr. The solvent nd BF_3 were removed and fractionated through a -112° trap into a -196° trap. The condensate in the -112° trap was characterized as the solvent, $CH₂Cl₂$, by its ir spectrum. The condensate in the -196° trap was BF₃, 1.75 mmol, and characterized by ir spectroscopy. The infrared spectrum of the brown solid reaction product obtained was identical to that of (I). This reaction was also carried out in the absence of the solvent. The reaction conditions were similar to those above except for the reaction temperature which was 25'.

*Reaction of (I) with BCl*₃

Boron trichloride, 1.78 mmol, was condensed onto (I), 0.339 g (0.218 mmol) (I) and CH_2Cl_2 at -196° , and the reaction mixture warmed to and maintained at 0" throughout the course of the reaction. The reaction mixture was stirred for 15 h without noticeable change. The solvent and unreacted $BCI₃$ were removed but quantitative separation was not achieved due to their similar vapor pressures. For the solid state reaction, a large excess amount of $BCl₃$, 16.343 mmol, was condensed into a flask containing (I), 0.371 g (0.24 mmol), at -196° and the reaction nixture stirred with liquid $BCl₃$ at 0° for 18 h. The ecovered BCI_3 was fractionated through -45° and -78° traps; no other gaseous products were obtained, and the amount of $BCl₃$ recovered determined 16.18 mmol. The solid reaction residue was greenish-brown in color but its ir spectrum was identical to that of (I).

Reaction of (I) with HCl

Hydrogen chloride, 1.615 mmol, was condensed onto (I), 0.479 g (0.307 mmol), and CH_2Cl_2 at -196° . The reaction mixture was warmed to and maintained with stirring at 0° for 26 h, P_{HCl} ~ 1 tm. Unreacted HCl recovered, after purification trough a -126 trap to remove CH_2Cl_2 , was 1.323 imol. The condensate in the -126° trap was characterized as pure $CH₂Cl₂$ by its ir spectrum and vapor pressure. The brown solid remaining in the flask had an ir spectrum identical to that of (I). Similar results were obtained when the reaction was carried out in the absence of solvent under *ca. 1* atm of HCl at 25° , for 14 h.

Reaction of (I) with CO

I), 0.472 g (0.304 mmol) was dissolved in ODCB with CO above the solution, 700 torr. The reaction mixture was stirred at 25° for 13 h after which a clear brown solution was obtained. Unreacted CO and the solvent were removed at 35° and the solvent determined to be pure ODCB by ir spectroscopy. The amorphous greenish-brown product contained ir absorptions at: 305Ow, 2108ms, 1582w, 1569w, 1475s, sh, 144Ovs, 131Ow, 118Ow, 1159w, 112Os,

1092s, 106Om, 1035m, 1025m, 998m, 889w, 845w, 748vs, 703s, sh, 69Ovs, 659w, 618vw, 544w, sh, 534m, 52Ovs, 51 lvs, 495m, 46Ow, 39Os, br, 32Ow, 285m, and 257m, cm-'. Pyrolysis of this product, 140" for 3 h affords CO, 0.088 mmol. The ir spec: trum of the pyrolysis residue contains absorptions at: 3060w, 2110vw, 1590w, 1575vw, 1480s, 1440vs, 131Ow, 1189m, 1162w, 112Os, 1095s, 1065m, 1025m, 999s, 97Ovw, 88Ow, 845w, 743s, 728s, 703vs, sh, 69Ovs, 618vw, 54Om, 522vs, 499m, 46Ow, 390ms, 360ms, and 270w, cm^{-1} . A ^{31}P nmr spectrum of the product from (I) and CO indicates the presence of trans- $[(C_6H_5)_3P]_2$ PtCOCl⁺; δ = 19.6 ppm from 85% H_2PO_4 ; ${}^1J_{PL-P}$ = 1975 Hz; $[(C_6H_5)_3P]_3P(CI^*)$; $6 = -22.9$ ppm, (P_A) , $^{1}J_{Pt-P_A} = 2481$, $^{2}J_{P_A P_B}$ 18 Hz; $S = 12.2$ ppm (P_B) , $J_{P_t-P} = 3642$ Hz, $J_{P_A P_B} = 18$ Hz.

. *

Reactions of (I) and C2H5

Ethylene, 0.971 mmol, was condensed onto (I), 0.526 g (0.340 mmol), and CH_2Cl_2 at -196° . The reaction mixture was stirred at room temperature for ca. 22 h, P_{ethvlene} = 400 torr. Ethylene, 0.968 mmol, was recovered and the spectrum of the residue was identical to (I).

References

- 1 In partial fulfillment of the Ph.D. degree, The Ohio State University (1976).
- 2 S. Wongnawa and E. P. Schram, Inorg. Chem., 16, 1001 (1977).
- *3 J. F. Plummer and E. P. Schram, Inorg. Chem., 14, 1505* (1975).
- 4 G. S. Rao, Z. *Anorg. Allg. Chem.,* 304, 351 (1960).
- 5 G. W. A. Fowles and R. A. Hoodless, J. Chem. Soc., 33 (1963).
- 6 G. S. Kyker and E. P. Schram, Inorg. Chem., 8, 2306 (1969).
- 7 'The Aldrich Library of Infrared Spectra', Aldrich Chemical Co., Inc. (1970) p. 873.
- 8 R. D. Gillard and M. F. Pilbrow, J. C'hem. SOC. *Dalton, 2320* (1974).
- Tong-Wai Lee and R. Stoufer, J. Am. Chem. Soc., 97, 195 (1975).
- 10 G. E. Coates, M. L. H. Green, and K. Wade, 'Organometallic Compounds', Vol. 1, Methuen, London (1967) p. 293.
- 11 T. R. Durkin and E. P. Schram, *Inorg. Chem., 11*, 1054 (1972).
- 12 R. L. Amster and R. C. Taylor, *Spectrochim. ACta, 20, 1487* (1964).
- 13 R. N. Scott, D. F. Shriver and L. Vaska, *J. Am. Chem. Sot., 90,* 1079 (1968).
- 14 M. Fishwick, H. Noth, W. Petz, and M. G. H. Wallbridge, Inorg. Chem., 15, 490 (1976).
- 15 M. C. Baird, D. N. Lawson, J. T. Mague, J. A. Osborn, and G. Wilkinson, *Chem. Cdmm.,* 129 (1966).
- 16 M. A. Bennett and D. L. Mimer, *J. Am. Chem. Sot., 91, 6983* (1969).
- 17 T. C. Wallington, *J. Phys. Chem., 70,* 11 (1966).
- 18 J. C. Evans and G. Y-S. Lo,J. *Chem. Sac., 1708* (1968). 19 H. C. Clark, K. R. Dixon, and W. J. Jacobs,J. *Am. Chem.*
- *Sot.. 90. 2259* (1968).
- *20* D. R. *St&l,Ind~and.kng. Chem., 39, 519* (1947).
- 21 D. F. Shriver, 'The Manipulations of Air-Sensitive Compounds', McGraw-Hill, N.Y. (1969) p. 270.
- 22 R. N. Keller, *Inorg. Syn., 2, 247* (1946).
- 23 G. B. Kauffman and D. O. Cowan, *Inorg. Syn.*, 7, 239 (1968).
- *24* L. Malatesta and C. Cariello, J. *Chem. Sac., 2323* (1968).